Triple Hydroxylation of Tetracenomycin A2 to Tetracenomycin C Involving Two Molecules of O₂ and One Molecule of **H2O**

Elpidio R. Rafanan, Jr.,† C. Richard Hutchinson,‡ and Ben Shen*,†

*Department of Chemistry, Uni*V*ersity of California, One Shields A*V*enue, Davis, California 95616, and School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706 shen@chem.ucda*V*is.edu*

Received August 10, 2000

ABSTRACT

The TcmG or ElmG oxygenase-catalyzed triple hydroxylation of tetracenomycin (Tcm) A2 to Tcm C proceeds via a novel monooxygenase− **dioxygenase mechanism, deriving the 4- and 12a-OH groups of Tcm C from two molecules of O2 and the 4a-OH group of Tcm C from a molecule of H2O. These results suggest a mechanistic analogy among TcmG, ElmG, and the bacterial and fungal hydroquinone epoxidizing dioxygenases, as well as the mammalian vitamin K-dependent** *γ***-glutamyl carboxylase.**

Tetracenomycim (Tcm) C (**1**),1 produced by *Streptomyces glaucescens*, and elloramycin A (**2**),2 produced by *Streptomyces olivaceus* Tü2353, are polyketide antibiotics characterized by a unique highly hydroxylated cyclohexenone moiety (Scheme 1, boxed). Previous studies have established that the 4- and 12a-OH groups³ and the 4a-OH group⁴ of 1 are derived from molecular O_2 and H_2O , respectively, and that the three hydroxy groups are introduced via an unprecedented triple hydroxylation of Tcm A2 (3) ,⁵ catalyzed by the Tcm A2 oxygenase that is encoded by *tcmG*. 5,6 Recent work on the biosynthesis of **2** has led to the identification of ElmG,7 a homologue of TcmG, which was proposed to

- (2) (a) Drautz, H.; Reuschenbach, P.; Zähner, H.; Rohr, J.; Zeeck, A. *J. Antibiot*. **¹⁹⁸⁵**, *³⁸*, 1291-1301. (b) Fiedler, H.-P.; Rohr, J.; Zeeck, A. *J.*
- *Antibiot*. **¹⁹⁸⁶**, *³⁹*, 856-859. (3) Anderson, M. G.; Khoo, C. L.; Rickards, R. W. *J. Antibiot*. **1989**, *⁴²*, 640-643.
- (4) Udvarnoki, G.; Wagner, C.; Machinek, R.; Rohr, J. *Angew. Chem., Int. Ed. Engl*. **¹⁹⁹⁵**, *³⁴*, 565-567.
- (5) Shen, B.; Hutchinson, C. R. *J. Biol. Chem*. **¹⁹⁹⁴**, *²⁶⁹*, 30726-30733.

catalyze a similar triple hydroxylation of 8-demethyl Tcm A2 (**4**) to 8-demethyl Tcm C (**5**) in vivo (Scheme 1). However, the molecular mechanism for the introduction of

^{*} Tel: (530)754-9382. Fax: (530)752-8995.

[†] University of California

[‡] University of Wisconsin

^{(1) (}a) Weber, W.; Zahner, H.; Siebers, J.; Schröder, K.; Zeeck, A. Arch. *Microbiol*. **¹⁹⁷⁹**, *¹²¹*, 111-116. (b) Egert, E.; Noltemeyer, M.; Siebers, J.; Rohr, J.; Zeeck, A. *J. Antibiot*. **¹⁹⁹²**, *⁴⁵*, 1190-1192.

these hydroxy groups into **3** or **4** remains unknown. We now report that hydroxylation of **3** to **1** catalyzed by either TcmG or ElmG under $^{18}O_2$ reveals that the 4- and 12a-OH groups are derived from *two* molecules of $O₂$ and that this reaction likely involves an epoxyquinone intermediate such as **6** that results from direct oxidation of the hydroquinone precursor, 4-hydroxy Tcm A2 (**7**).

Both dioxygenase and monooxygenase-dioxygenase mechanisms have been proposed for this triple hydroxylation reaction,^{4,5} either of which is consistent with all the results from earlier in vivo labeling experiments^{3,4} with both $^{18}O_2$ and H_2 ¹⁸O. As shown in Scheme 2A, the 4- and 12a-OH groups could be introduced in a concerted fashion from one molecule of O_2 in a dioxygenase mechanism to form an epoxysemiquinone intermediate **8**; cis-opening of its oxirane ring by a H2O molecule could introduce the 4a-OH to yield **1**. (While most known epoxide hydrolases catalyze transopening of the oxirane ring, 8 examples of cis-opening have been observed.9) Alternatively, as shown in Scheme 2B, the 4- and 12a-OH groups could be introduced stepwise from two molecules of O_2 in a monooxygenase-dioxygenase mechanism to form intermediates **7** and **6**, respectively. Cisopening of the oxirane ring of 6 by a H_2O molecule could then introduce the 4a-OH to yield dihydroxyquinone **9** that could be finally reduced to **1**.

These mechanisms can be differentiated by carrying out the reaction in vitro under an atmosphere of ${}^{16}O_2/{}^{18}O_2$. If the enzyme reaction follows the dioxygenase mechanism (Scheme 2A), both ^{18}O atoms, as opposed to two ^{16}O atoms, from one $^{18}O_2$ molecule will be incorporated into 1 at the C-4 and -12a positions. One would expect an elevated abundance of a molecular ion for **1**, in which the molecular weight is increased by 4 mass units, $(M + 4)$, as appeared in **1a**. If the enzyme reaction follows the monooxygenasedioxygenase mechanism (Scheme 2B), the two 18 O atoms at the C-4 and -12a of 1 will be incorporated from two $^{18}O_2$ molecules. One would then expect the appearance of an elevated abundance of $M + 2$ in 1 that arises from ¹⁸O incorporation exclusively at C-4 by the monooxygenase activity as shown in **7a**. Regiospecific oxygenation of **7** by the dioxygenase activity could subsequently lead to either epoxyquinone hydrate **10** or **11**. Dehydration of **10** to **6** could eliminate diastereospecifically either the *pro-R* 16O- or *pro*-*S* 18O-hydroxy group at C-1, leading to retention or loss of the 18O label at this site. Consequently, one would expect the appearance of an elevated abundance of M + 2 (¹⁸O at C-4), M + 4 (¹⁸O at C-1 and -12a), and M + 6 (¹⁸O at C-4,

-1, and -12a) ions as shown in **1b** if the *pro*-R 1-OH is eliminated, but only that of $M + 2$ (¹⁸O at C-4 or C-12a) and $M + 4$ (¹⁸O at C-4 and $-12a$) ions as shown in **1c** if the *pro*-S 1-OH is eliminated. In contrast, dehydration of **11** to **6** by eliminating either of the *pro-S* or *pro-R* hydroxy group at C-4 results in the loss of the 18O label at this site. One would then expect the appearance of an elevated abundance of $M + 2$ (¹⁸O at C-4 or C-12a) and $M + 4$ (¹⁸O at C-4 and -12a) ions only as shown in **1d**.

The *tcmG* and *elmG* genes were overexpressed in *Streptomyces lividans* 1326 using pWHM68⁵ and pBS4006,^{7b} respectively, and the resultant TcmG and ElmG proteins were

⁽⁶⁾ Decker, H.; Motamedi, H.; Hutchinson, C. R. *J. Bacteriol*. **1993**, *175*, ³⁸⁷⁶-3886.

^{(7) (}a) Decker, H.; Rohr, J.; Motamedi, H.; Zahner, H.; Hutchinson, C. R. *Gene* **¹⁹⁹⁵**, *¹⁶⁶*, 121-126. (b) Rafanan, E. R., Jr.; Le, L.; Zhao, L.; Decker, H.; Shen, B. Submitted.

^{(8) (}a) Nardini, M.; Ridder, I. S.; Rozeboom, H. J.; Kalk, K. H.; Rink, R.; Janssen, D. B.; Dijkstra, B. W. *J. Biol. Chem*. **¹⁹⁹⁹**, *²⁷⁴*, 14579-14566. (b) Argiriadi, M. A.; Morisseau, C.; Hammock, B. D.; Christianson, D. W. *Proc. Natl. Acad. Sci. U.S.A*. **¹⁹⁹⁹**, *⁹⁶*, 10637-10642. (c) Leibman, K.; Ortiz, E. *Mol. Pharmacol*. **¹⁹⁶⁸**, *⁴*, 201-207. (d) van der Werf, M. J.;

Overkamp, K. M.; de Bont, J. A. M. *J. Bacteriol*. **¹⁹⁹⁸**, *¹⁸⁰*, 5052-5057. (9) (a) Suzuki, Y.; Imai, K.; Marumo, S. *J. Am. Chem. Soc*. **1974**, *96*, ³⁷⁰³-3705. (b) Kolattukudy, P. E.; Brown L. *Arch. Biochem. Biophys*. **¹⁹⁷⁵**, *¹⁶⁶*, 599-607. (c) Silverman, R. B. *J. Am. Chem. Soc*. **¹⁹⁸¹**, *¹⁰³*, ⁵⁹³⁹-5941. (d) Preusch, P. C.; Suttie, J. W. *J. Org. Chem*. **¹⁹⁸³**, *⁴⁸*, 3301- 3305.

		[molecular ion]			
		M	$M+2$	$M + 4$	$M+6$
calculated:	natural abundance	100	5.4	0.1	$\mathbf{0}$
	dioxygenase (Scheme 2A)	100	5.4	156	$\bf{0}$
	monooxygenase-diooxygenase (Scheme 2B)				
	pathway A: loss of $pro-R 1-OH$	100	161	156	245
	loss of $pro-S 1$ -OH	100	318	245	$\mathbf{0}$
	pathway B: loss of $pro-R$ 4-OH	100	318	245	$\bf{0}$
	loss of $pro-S$ 4-OH	100	5.4	156	$\mathbf{0}$
found:	control (air, ${}^{16}O_2$)	100	12 ± 6	0^a	0 ^a
	TcmG	100	230 ± 50	146 ± 32	0 ^a
	EImG	100	221 ± 10	$117 + 5$	0 ^a
	^{<i>a</i>} Too low to be determined meaningfully.				

Table 1. Incorporation of ¹⁸O into 1 by TcmG- or ElmG-Catalyzed Oxygenation of 3 under ¹⁸O₂ (¹⁸O₂/¹⁶O₂ = 61/39) As Determined by EI-MS

purified to homogeneity.^{5,7b} Incubations^{5,7b} (60 mL) of either TcmG (2.5 mg) or ElmG (2.5 mg) with 50 *µ*M **3**, 250 *µ*M NADPH, 1 mM DTT, and 10% DMSO, in 50 mM Tris-HCl, pH 9.0, under an atmosphere of ${}^{18}O_2$ (${}^{18}O_2/{}^{16}O_2 = 61/$
39) for 1 h at 30 °C resulted in the formation of ${}^{18}O_2$ aheled 39) for 1 h at 30 $^{\circ}$ C, resulted in the formation of ¹⁸O-labeled **1**. The latter was purified by $HPLC^{5,7b}$ and subjected to electron-spray mass spectrometry (EI-MS) analysis to determine the incorporation of the 18O label; under the negative mode of EI-MS **1** yields a molecular ion at *m*/*e* 471 as a base peak. Table 1 summarizes the calculated and observed relative abundance of M, $M + 2$, $M + 4$, and $M + 6$ ions for the 18O-labeled **1**. The found data were the average of two runs each for TcmG and ElmG, both of which yield **1** with similar levels (within the standard deviation) of ^{18}O incorporation.

The following conclusions can be drawn based on these results. (1) The observed abundance of the $M + 2$ ion -230 \pm 50% from TcmG and 221 \pm 10% from ElmGconclusively excludes the dioxygenase mechanism (Scheme 2A) that predicts the $M + 2$ ion with only 5.4% intensity resulting from natural abundance. (It has been demonstrated previously that the oxygen atoms at C-1, -4, and -12a do not undergo exchange with $H_2^{18}O$ during the biosynthesis,⁴ precluding the loss of 18O label by exchange.) (2) The elevated abundance of the $M + 2$ ion also establishes that the 4- and 12a-OH groups are derived from two molecules of O_2 , supporting the monooxygenase-diooxygenase mechanism (Scheme 2B). (3) The involvement of **7** as an intermediate is consistent with the amino acid sequence homology between TcmG and ElmG and other bacterial hydroxylases.6,7 Direct epoxidation of **7** to **6** is mechanistically analogous to the dihydroxyacetanilide epoxidase-I $(DHAE-I)¹⁰$ a member of the recently identified hydroquinone epoxidizing dioxygenase family involved in the biosynthesis of numerous bacterial and fungal epoxyquinones

or epoxysemiquinones, $10,11$ as well as to the mammalian vitamin K-dependent *γ*-glutamyl carboxylase.12 Both DHAE-I^{10c} and vitamin K-dependent *γ*-glutamyl carboxylase^{12a,b} have been found to operate as dioxygenases via an epoxyquinone hydrate intermediate similar to **10** and **11**. On the assumption that dehydration of **10** and **11** proceed similarly in a nondiastereospecifically fashion, $10c,12a,b$ the absence of the $M + 6$ ion suggests the lack of ¹⁸O incorporation at C-1, as shown in **1c**, arguing against the involvement of pathway A (Scheme 2b). We therefore favor pathway B (Scheme 2B), which is supported by the observed abundance of $M + 2$ and $M + 4$. Recently, we have reported the crystallization of the TcmG protein and its preliminary X-ray data.13 We envisage that TcmG or ElmG could serve as an excellent model to investigate the molecular mechanism of this family of intriguing enzymes.

Acknowledgment. We thank donors of the Petroleum Research Fund, administered by the American Chemical Society, the Searle Scholars Program/The Chicago Community trust (B.S.), and National Institutes of Health Grant CA35383 (C.R.H.) for partial support of this work.

OL0002267

^{(10) (}a) Gould, S. J.; Shen, B. *J. Am Chem. Soc*. **¹⁹⁹¹**, *¹¹³*, 684-686. (b) Shen, B.; Gould, S. J. *Biochemistry* **¹⁹⁹¹**, *³⁰*, 8936-8944. (c) Gould, S. J.; Kirchmeier, M.; LaFever, R. E. J*. Am. Chem. Soc*. **¹⁹⁹⁶**, *¹¹⁸*, 7663- 7666.
(11) (a) Omura, S.; Minami, S.; Tanaka, H. *J. Biochem.* **1981**, 90, 291–

^{(11) (}a) Omura, S.; Minami, S.; Tanaka, H. *J. Biochem*. **¹⁹⁸¹**, *⁹⁰*, 291- 293. (b) Priest, J. W.; Light, R. J. *Biochemistry* **¹⁹⁸⁹**, *²⁸*, 9192-9200.

^{(12) (}a) Dowd, P.; Ham, S.-W.; Hershline, R. *J. Am Chem. Soc*. **1992**, *¹¹⁴*, 7613-7617. (b) Kuliopulos, A.; Hubbard, B. R.; Lam, Z.; Koski, I. J.; Furie, B.; Furie, B. C.; Walsh, C. T. *Biochemistry* **¹⁹⁹²**, *³¹*, 7722- 7728. (c) Zheng, Y.-J.; Bruice, T. C. *J. Am. Chem. Soc*. **¹⁹⁹⁸**, *¹²⁰*, 1623-

^{1624. (}d) Dowd, P.; Hershline, R.; Ham, S. W.; Naganathan, S. *Nat. Prod. Rep*. **¹⁹⁹⁴**, *¹¹*, 252-264.

⁽¹³⁾ Beynon, J. D.; Rafanan, E. R., Jr.; Shen, B.; Fisher, A. J. *Acta Crystallogr. D*, in press.